2,408 research outputs found

    Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Get PDF
    Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain

    Polycystic kidney disease in patients on the renal transplant waiting list: trends in hematocrit and survival

    Get PDF
    BACKGROUND: The patient characteristics and mortality associated with autosomal dominant polycystic kidney disease (PKD) have not been characterized for a national sample of end stage renal disease (ESRD) patients on the renal transplant waiting list. METHODS: 40,493 patients in the United States Renal Data System who were initiated on ESRD therapy between 1 April 1995 and 29 June 1999 and later enrolled on the renal transplant waiting list were analyzed in an historical cohort study of the relationship between hematocrit at the time of presentation to ESRD and survival (using Cox Regression) in patients with PKD as a cause of ESRD. RESULTS: Hematocrit levels at presentation to ESRD increased significantly over more recent years of the study. Hematocrit rose in parallel in patients with and without PKD, but patients with PKD had consistently higher hemoglobin. PKD was independently associated with higher hematocrit in multiple linear regression analysis (p < 0.0001). In logistic regression, higher hematocrit was independently associated with PKD. In Cox Regression analysis, PKD was associated with statistically significant improved survival both in comparison with diabetic (hazard ratio, 0.64, 95% CI 0.53–0.77, p < 0.001) and non-diabetic (HR 0.68, 95% CI 0.56–0.82, p = 0.001) ESRD patients, adjusted for all other factors. CONCLUSIONS: Hematocrit at presentation to ESRD was significantly higher in patients with PKD compared with patients with other causes of ESRD. The survival advantage of PKD in ESRD persisted even adjusted for differences in hematocrit and in comparison with patients on the renal transplant waiting list

    Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    Get PDF
    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism

    String theoretic QCD axions in the light of PLANCK and BICEP2

    Get PDF
    The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full anharmonic effects, references added, version accepted for publication in JHE

    The South Asian genome

    Get PDF
    Genetics of disease Microarrays Variant genotypes Population genetics Sequence alignment AllelesThe genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.Whole genome sequencing to discover genetic variants underlying type-2 diabetes, coronary heart disease and related phenotypes amongst Indian Asians. Imperial College Healthcare NHS Trust cBRC 2011-13 (JS Kooner [PI], JC Chambers)

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly

    Get PDF
    Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q_T, in which large logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either \alpha_s or q_T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q_T=0, including the normalization and first-order \alpha_s(q_*) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure

    An M Theory Solution to the Strong CP Problem and Constraints on the Axiverse

    Get PDF
    We give an explicit realization of the "String Axiverse" discussed in Arvanitaki et. al \cite{Arvanitaki:2009fg} by extending our previous results on moduli stabilization in MM theory to include axions. We extend the analysis of \cite{Arvanitaki:2009fg} to allow for high scale inflation that leads to a moduli dominated pre-BBN Universe. We demonstrate that an axion which solves the strong-CP problem naturally arises and that both the axion decay constants and GUT scale can consistently be around 2×10162\times 10^{16} GeV with a much smaller fine tuning than is usually expected. Constraints on the Axiverse from cosmological observations, namely isocurvature perturbations and tensor modes are described. Extending work of Fox et. al \cite{Fox:2004kb}, we note that {\it the observation of tensor modes at Planck will falsify the Axiverse completely.} Finally we note that Axiverse models whose lightest axion has mass of order 101510^{-15} eV and with decay constants of order 5×10145\times 10^{14} GeV require no (anthropic) fine-tuning, though standard unification at 101610^{16} GeV is difficult to accommodate.Comment: 16 pages, 8 figures, v2 References adde

    A survey of cognitive assistants

    Get PDF
    Cognitive Assistants is a subset area of Personal Assistants focused on ubiquitous and pervasive platforms and services. They are aimed at elderly people’s needs, habits, and emotions by being dynamic, adaptive, sensitive, and responsive. These advances make cognitive assistants a true candidate of being used in real scenarios and help elderly people at home and outside environments. This survey will discuss the cognitive assistants’ emergence in order to provide a list of new projects being developed on this area. We summarize and enumerate the state-of-the-art projects. Moreover, we discuss how technology support the elderly affected by physical or mental disabilities or chronic diseases.Programa Operacional Temático Factores de Competitividade (UID/CEC/00319/2013

    Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome after renal transplantation in the United States

    Get PDF
    BACKGROUND: The incidence and risk factors for diabetic ketoacidosis (diabetic ketoacidosis) and hyperglycemic hyperosmolar syndrome (hyperglycemic hyperosmolar syndrome, previously called non-ketotic hyperosmolar coma) have not been reported in a national population of renal transplant (renal transplantation) recipients. METHODS: We performed a historical cohort study of 39,628 renal transplantation recipients in the United States Renal Data System between 1 July 1994 and 30 June 1998, followed until 31 Dec 1999. Outcomes were hospitalizations for a primary diagnosis of diabetic ketoacidosis (ICD-9 code 250.1x) and hyperglycemic hyperosmolar syndrome (code 250.2x). Cox Regression analysis was used to calculate adjusted hazard ratios for time to hospitalization for diabetic ketoacidosis or hyperglycemic hyperosmolar syndrome. RESULTS: The incidence of diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were 33.2/1000 person years (PY) and 2.7/1000 PY respectively for recipients with a prior diagnosis of diabetes mellitus (DM), and 2.0/1000 PY and 1.1/1000 PY in patients without DM. In Cox Regression analysis, African Americans (AHR, 2.71, 95 %CI, 1.96–3.75), females, recipients of cadaver kidneys, patients age 33–44 (vs. >55), more recent year of transplant, and patients with maintenance TAC (tacrolimus, vs. cyclosporine) had significantly higher risk of diabetic ketoacidosis. However, the rate of diabetic ketoacidosis decreased more over time in TAC users than overall. Risk factors for hyperglycemic hyperosmolar syndrome were similar except for the significance of positive recipient hepatitis C serology and non-significance of female gender. Both diabetic ketoacidosis (AHR, 2.44, 95% CI, 2.10–2.85, p < 0.0001) and hyperglycemic hyperosmolar syndrome (AHR 1.87, 95% CI, 1.22–2.88, p = 0.004) were independently associated with increased mortality. CONCLUSIONS: We conclude that diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were associated with increased risk of mortality and were not uncommon after renal transplantation. High-risk groups were identified
    corecore